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Cross-domain Adaptation of Vision-Language Foundation Models
for Medical Applications

Abstract
Vision-language models that understand inter-
actions between medical images and text re-
ports could enable various useful applications in
healthcare. However, developing such medical
models is challenging due to insufficient train-
ing data, unlike natural images. The study ex-
amines different pretrained VL models, includ-
ing those trained on general image-text data
(coarse-grained) and those finetuned on object
detection (fine-grained), as starting points. It
then explores adapting these natural models to
the medical domain using self-supervised pre-
training on medical image-text data and fine-
tuning on medical report generation. The
adapted models are evaluated on retrieval and
report generation tasks. Results show both pre-
training and finetuning assist adaptation, with
coarse-grained natural models demonstrating
the best transferability. The investigation pro-
vides guidance for harnessing VL models across
domains with limited data.

Keywords: Vision-language understanding,
cross-domain adaptation, medical report gen-
eration, foundation models

1. Introduction

Healthcare in the era of precision medicine and per-
sonalized treatment increasingly relies on harnessing
complex, multi-modal medical data, including med-
ical images, radiology reports, and electronic health
records (Acosta et al., 2022; Moor et al., 2023a; Zhang
et al., 2022; Moor et al., 2023b; Tu et al., 2023). Un-
derstanding the interactions within and across these
data modalities is critical for improving patient out-
comes through applications such as automated re-
port generation (Huang et al., 2021), image-text re-
trieval for clinical decision support (Jeong et al., 2023;
Boecking et al., 2022), and zero-shot disease detec-
tion (Tiu et al., 2022; Wang et al., 2022; Mishra et al.,
2023).
Recent years have seen promising advances in self-

supervised representation learning for medical images

Figure 1: The framework for our study, which aims to
answer a critical question: Can vision-language models,
initially trained on large-scale natural image and text
datasets, be effectively adapted for medical applications
where data is often limited? We approach this ques-
tion by exploring various types of representations, both
coarse-grained and fine-grained, and employing adapta-
tion strategies such as medical pre-training and fine-
tuning.

and text, particularly through pre-training on paired
chest X-rays and radiology reports using contrastive
learning objectives (Tiu et al., 2022; Zhang et al.,
2022). The pretrained models are then finetuned on
downstream tasks like disease classification, report
generation, and retrieval (Jeong et al., 2023; Huang
et al., 2021). However, most prior works have fo-
cused on contrastive loss for pretraining, while some
recent works have started examining the effects of
other objectives such as masked language modeling
loss (Boecking et al., 2022) or multi-granularity con-
trastive loss (Wang et al., 2022).

In the natural image and text domains, an explo-
sion of research on vision-language (VL) modeling has
demonstrated the remarkable adaptability of these
models to a diverse array of downstream tasks (Li
et al., 2022; Dou et al., 2022). By pretraining on mas-
sive datasets using varied self-supervised losses, VL
models have shown an impressive ability to general-
ize. However, it remains an open question whether
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and how such natural domain VL models, which har-
ness orders of magnitude more data, can transfer
to medical settings where limited datasets are the
norm (Zhang et al., 2023; Xu et al., 2023a,b).
Specifically, our contributions are as follows:

• We examine the generalization capabilities of dif-
ferent VL models originally designed for natural
domains when adapted to medical tasks. Our ex-
periments use the MIMIC-CXR dataset, which
contains a large number of chest X-ray images
and associated radiology reports, to evaluate the
models on zero-shot image-report retrieval and
medical report generation tasks.

• We assess the comparative effectiveness of adap-
tation approaches, including continued pretrain-
ing and finetuning, for enabling these cross-
domain transfers. Our results indicate that
both medical pre-training and fine-tuning signifi-
cantly improve performance over models trained
from scratch. Notably, coarse-grained pre-trained
models outperform fine-grained models in medi-
cal tasks, likely due to their ability to capture
more general global representations.

• We evaluate the performance of adapted mod-
els on critical medical applications using both
similarity-based metrics like BLEU and clinically-
focused metrics like RadCliQ (Yu et al., 2022).
Our findings reveal that adapted models outper-
form those trained from scratch in medical re-
port generation. However, the performance gaps
are smaller for report generation, suggesting that
fine-tuning during this supervised task may lead
to a loss of some pre-trained representations.

• Our study also uncovers nuanced findings in the
performance of coarse-grained versus fine-grained
models. Coarse-grained models excel in zero-shot
retrieval tasks and medical report generation, in-
dicating their broader applicability in the medical
domain. Fine-grained models, although less effec-
tive in our medical tasks, offer insights into the
limitations of current adaptation strategies.

By rigorously addressing these questions on model
adaptability, adaptation strategies, and evaluation on
priority medical tasks, this study generates valuable
insights and guidance for deploying data-intensive VL
models in limited-data domains like healthcare. Our
findings offer a pathway towards harnessing state-of-
the-art VL methods to create automated solutions
that can enhance clinical workflows and improve pa-
tient care.

Figure 2: A simplified representation of the FIBER archi-
tecture Dou et al. (2022) consisting of vision and language
backbones with injected cross attention modules for deep
multimodal fusion.

2. Methods

Figure 3 outlines our approach to exploring the is-
sue of cross-domain adaptation in vision-language
models. Initially, we examine a range of vision-
language models that have been pre-trained on exten-
sive datasets of natural images and text. These mod-
els are designed to learn various types of representa-
tions, both at coarse-grained and fine-grained levels
(Dou et al., 2022). “Coarse-grained” refers to global,
image-level tasks and representations, whereas “fine-
grained” refers to more localized region-level image-
text tasks and representations. We refer to these
models as natural domain vision-language mod-
els. Their focus on different aspects of representation
learning, as defined by these granularity levels, may
affect how well they generalize to the medical domain.

For the medical adaptation phase, we em-
ploy different strategies for cross-domain adaptation.
These include: (1) medical pre-training, where we use
a variety of self-supervised loss functions to adapt
both the image and text encoders using medical im-
ages and reports; and (2) medical fine-tuning, where
the image encoder and text decoder are adapted
through a generative task that employs an image cap-
tioning loss function.

In this section, we delve into the technical specifics
of both the natural domain vision-language models
(section 2.2) and the methods used for medical adap-
tation. We begin by detailing the backbone archi-
tecture used for learning vision-language representa-
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Figure 3: Framework of cross-domain adaption process. For natural domain vision-language models, there
are multiple training stages where the models can be categorized as four classes including: (1) coarse-grained repre-
sentation learning through pre-training via self-supervised learning and then fine-tuning on specific dataset (COCO
dataset) and task (image captioning) with corresponding labels. (2) fine-grained representation learning through
pre-training via self-supervised learning and then fine-tuning on specific dataset (COCO dataset) and task (object
detection) with corresponding labels. For medical adaption methods, we consider two adaptation tasks, that is,
(1) medical pre-training: utilize various self-supervised losses to learn from the pairs of medical images and reports to
adapt image encoder and text encoder; (2) medical fine-tuning: learn to adapt the image encoder and text decoder
through a generative task with the image captioning loss function.

tions (section 2.1). Following that, we discuss the
two methods we employ for cross-domain adaptation:
medical pre-training using self-supervised tasks (sec-
tion 2.3) and medical fine-tuning through a genera-
tive task (section 2.4).

2.1. Model architecture

We adopt FIBER as our primary model, as depicted
in Figure 2 (Dou et al., 2022). FIBER integrates both
an image and a text backbone and employs deep mul-
timodal fusion through direct cross-attention mod-
ules between these backbones.

FIBER’s architecture is highly versatile, allowing
it to adapt to various tasks and loss functions by tog-

gling the cross-attention modules and incorporating
an object detection head.

We use a Swin Transformer, specifically Swin-Base,
for the vision backbone and RoBERTa-Base for the
text backbone throughout both pre-training and fine-
tuning stages.

2.2. Natural Domain VL Models

We employ a two-stage coarse-to-fine pre-training
methodology to establish four interconnected types of
natural domain FIBER models. Each of these models
serve as starting points for medical domain adapta-
tion and represent different degrees of specialization
on natural image-text representations.
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Figure 4: Example for medical report generation from the given X-ray image. Sentences highlighted in green show
the correct generation in the model outputs while sentences in red indicate the missing information in the generated
report.

Coarse-grained Pre-training We initiate with a
FIBER model pre-trained on natural image datasets.
This model employs a combination of Masked
Language Modeling (MLM), Image-Text Matching
(ITM), and Image-Text Contrastive (ITC) objectives.

Coarse-grained Fine-tuning The coarse-grained
pre-trained FIBER model is further fine-tuned using
a natural image captioning dataset. This fine-tuning
employs a language modeling loss function.

Fine-grained Pre-training We also consider a
fine-grained pre-trained FIBER model, which is
a coarse-grained pre-trained FIBER model further
pre-trained on natural image object detection and
grounding datasets.

Fine-grained Fine-tuning Finally, a fine-grained
pre-trained FIBER model is additionally fine-tuned
using a natural image object detection dataset to ob-
tain a fine-grained finetuned FIBER model.

In this study, we explore two medical adapta-
tion tasks: medical pre-training and medical fine-
tuning starting from each of these four types of nat-
ural vision-language models. We also investigate a
two-stage medical adaptation process which combines
these two adaptation tasks.

2.3. Medical Pre-training

Medical pre-training is conceptually similar to the
coarse-grained pre-training approach. We apply a
combination of MLM, ITC, and ITM objectives to

a medical image-text dataset, specifically MIMIC-
CXR.

2.4. Medical Fine-tuning

Medical fine-tuning aims to generate medical reports
and is akin to the coarse-grained fine-tuning ap-
proach. We use a medical domain image-text dataset
for this purpose.

Technical Details Consistent with prior work, the
final image representation, as opposed to the in-
termediate image representations, is fed into the
cross-attention modules, resulting in a sequence-to-
sequence model structure. Causal masks are used for
auto-regressive text decoding.

3. Experiments

3.1. Datasets

We perform our experiments on the MIMIC-CXR
dataset (Johnson et al., 2019a,b; Goldberger et al.,
2000), which consists of paired chest X-ray im-
ages and corresponding radiology reports. The raw
dataset contains 377,110 images linked to 227,835 ra-
diographic studies.

Data Splitting and Preprocessing For our ex-
periments, we create training and testing subsets
based on the official data split provided by MIMIC-
CXR. Specifically, we consider the target report to
be a concatenation of both the “findings” and “im-
pression” sections from the raw radiology reports.
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Models Metrics

Natural-domain Models
Medical Adaptation Medical Image-to-Report Retrieval Medical Report-to-Image Retrieval

Pre-training Fine-tuning R@5↑ R@10↑ Reciprocal Rank↑ R@5↑ R@10↑ Reciprocal Rank↑
✓ 0.411 0.822 0.603 0.411 0.651 0.593
✓ ✓ 0.240 0.445 0.386 0.171 0.308 0.288

✓ 0.102 0.377 0.274 0.240 0.514 0.294
✓ ✓ 27.064 38.472 18.804 26.824 37.239 18.125
✓ ✓ 0.411 0.754 0.581 0.308 0.514 0.376
✓ ✓ ✓ 3.049 5.721 2.746 0.514 0.856 0.567

Gloria (Huang et al., 2021) 0.102 0.240 0.330 2.672 3.871 2.014

Table 1: Performance of zero-shot retrieval task. (All scores are reported in percent (%))

After preprocessing, our training subset comprises
356,220 images corresponding to 213,501 unique stud-
ies, while the testing subset includes 4,665 images and
2,919 unique studies.

Evaluation Subset All tasks are evaluated using
this testing subset.

3.2. Task I: Zero-shot Retrieval

To assess the efficacy of our vision-language represen-
tation learning, we conduct a zero-shot image-report
retrieval task without any model fine-tuning. This
task serves as a measure of the quality of visual and
text embeddings generated by our various models.

Experimental Setup In this experimental setup,
the retrieval task is conducted on the entire testing
subset, which contains 2,919 unique pairs of medical
images and reports. For image-to-report retrieval, a
query medical image is used to retrieve a target report
from a database of 2,919 candidate reports, based
on cosine similarity between their respective visual
and text embeddings. Importantly, all embeddings
are extracted using pre-trained encoders without any
additional fine-tuning, making these true zero-shot
retrieval tasks.

Evaluation Metrics We employ multiple quanti-
tative metrics to evaluate retrieval performance, in-
cluding recall at top-k (R@k) and reciprocal rank.
R@k quantifies the likelihood that the true retrieval
target appears within the top-k retrieved results. Re-
ciprocal rank is calculated as the inverse of the rank
at which the first relevant item appears. We report
the average scores across all test samples for these
metrics.

3.3. Task II: Medical Report Generation

To assess the utility of our learned multimodal repre-
sentations in downstream applications, we fine-tune
our model for medical report generation. The model
takes a medical image as input and generates a free-
text report that includes both findings and impres-
sions related to the image.

Experimental Setup The model receives a single
X-ray image and generates a corresponding radiology
report through a text generator and beam search.

Evaluation Metrics To gauge the quality of the
generated reports, we compare them to ground-truth
reports extracted from the raw radiology data asso-
ciated with each patient study. We employ a vari-
ety of metrics to evaluate the generated reports, in-
cluding BLEU-2, BLEU-3, and BLEU-4 scores (Pa-
pineni et al., 2002) for linguistic similarity. Addi-
tionally, we use semantic similarity metrics such as
BERTScore (Zhang et al., 2020), CheXbert (Smit
et al., 2020), and RadGraph (Jain et al., 2021).

Clinical Relevance To provide a clinically rele-
vant evaluation, we incorporate RadCliQ, a metric
introduced in Yu et al. (2022). This metric combines
multiple evaluation criteria to align with the assess-
ments made by clinical experts. We report the av-
erage scores across all test samples for each of these
metrics.

4. Results

4.1. Zero-shot Retrieval

The outcomes of the zero-shot retrieval task are sum-
marized in Table 1. This table includes results for
both medical image-to-report and report-to-image re-
trieval tasks. The first two rows display the perfor-
mance of models trained solely on medical data, with-
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Models Metrics
Coarse-grained Fine-grained Medical Adaptation Medical Image-to-Report Retrieval Medical Report-to-Image Retrieval

Pre-trained Fine-tuned Pre-trained Fine-tuned Pre-trained Fine-tuned R@5↑ R@10↑ Reciprocal Rank↑ R@5↑ R@10↑ Reciprocal Rank↑
✓ ✓ 27.064 38.472 18.804 26.824 37.239 18.125
✓ ✓ ✓ 10.380 16.581 8.010 8.702 14.046 7.061
✓ ✓ ✓ 12.264 19.253 8.763 10.106 17.575 7.999
✓ ✓ ✓ ✓ 10.963 18.774 8.311 10.414 16.375 7.600
✓ ✓ 0.411 0.754 0.581 0.308 0.514 0.376
✓ ✓ ✓ 0.206 0.548 0.384 0.171 0.274 0.280
✓ ✓ ✓ 0.274 0.548 0.332 0.171 0.308 0.287
✓ ✓ ✓ ✓ 0.171 0.343 0.285 0.103 0.411 0.296
✓ ✓ ✓ 3.049 5.721 2.746 0.514 0.856 0.567
✓ ✓ ✓ ✓ 2.295 4.488 2.339 1.370 2.672 1.494
✓ ✓ ✓ ✓ 1.370 2.192 1.176 0.171 0.411 0.302
✓ ✓ ✓ ✓ ✓ 0.548 1.131 0.818 0.171 0.308 0.295

Table 2: Performance of zero-shot retrieval task. (All scores are reported in percent (%))

out leveraging any pre-trained natural-domain mod-
els. Rows three to six feature the results of cross-
domain adaptation models, which start from pre-
trained natural-domain models and undergo either
medical pre-training or fine-tuning. For a detailed
breakdown of the natural domain models and the var-
ious medical adaptation methods, refer to Fig. 3.

Role of Initialization and Adaptation Our re-
sults show that both initializing with natural domain
vision-language models and further medical adapta-
tion training play key roles in improving represen-
tations for medical retrieval through cross-domain
transfer. This aligns with our hypothesis, illustrated
in Fig. 1, that adapting large-scale natural models
can leverage limited medical data while bridging the
domain gap. To demonstrate the effectiveness of
adapted models, we compare against GLoRIA, and a
baseline FIBER model trained from scratch on med-
ical image-text pairs via self-supervision.

Differential Impact of Pre-training and Fine-
tuning Although both medical pre-training and
fine-tuning improve performance, pre-training results
in much larger gains on the image-report retrieval
task. This significant difference in impact can be at-
tributed to the nature of the objectives used in each
adaptation approach.

In pre-training, self-supervised objectives like
masked language modeling and image-text matching
directly optimize the model to produce effective en-
codings of medical images and text. In contrast, fine-
tuning focuses on the downstream task of medical
report generation, which does not directly optimize
the text encoder for retrieval tasks. However, it still
refines the visual embeddings, albeit less dramatically
than direct pre-training.

Cross-Domain Generalization To further probe
generalization of natural domain vision-language
models, we perform an ablation using variants from
different training stages as initialization for adap-
tation. Specifically, we consider four model types
- coarse-grained pre-training, coarse-grained fine-
tuning, fine-grained pre-training, and fine-grained
fine-tuning.

As Table 2 shows, coarse-grained pre-training mod-
els transfer best across domains, with their generic
global representations enabling robust adaptation.
Fine-grained models learn localized features benefi-
cial for medical tasks, but their specialized represen-
tations seem less transferable.

4.2. Medical Report Generation

Impact on Medical Report Generation As
shown in Table 3, adapting natural domain vision-
language models also assists performance on the med-
ical report generation task, beyond just improving
retrieval.

Efficiency of Task-Similar Fine-tuning Natu-
ral domain models that were fine-tuned on image cap-
tioning also achieve near state-of-the-art performance
after adaptation on medical report generation. This
suggests that task similarity enables more efficient
transfer.

Performance Gaps and Knowledge Transfer
However, the performance gaps between different
model variants are smaller for medical report gener-
ation compared to retrieval tasks. This implies that
fine-tuning on the supervised generation task may re-
sult in some loss of transferable knowledge from the
pre-trained representations.
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Models Metrics
Coarse-grained Fine-grained Medical Adaptation

BLEU-2↑ BLEU-3↑ BLEU-4↑ BERTScore↑ CheXbert↑ RadGraph↑ RadCliQ↓
Pre-trained Fine-tuned Pre-trained Fine-tuned Pre-trained Fine-tuned

✓ ✓ 0.143 0.089 0.062 0.340 0.304 0.134 3.814
✓ ✓ 0.155 0.099 0.069 0.352 0.346 0.156 3.671
✓ ✓ ✓ 0.156 0.100 0.069 0.353 0.351 0.159 3.656
✓ ✓ ✓ 0.154 0.098 0.068 0.351 0.344 0.154 3.681
✓ ✓ ✓ ✓ 0.153 0.096 0.066 0.347 0.344 0.149 3.700
✓ ✓ ✓ 0.157 0.100 0.069 0.354 0.359 0.159 3.638
✓ ✓ ✓ ✓ 0.155 0.100 0.070 0.355 0.356 0.159 3.640
✓ ✓ ✓ ✓ 0.155 0.098 0.068 0.350 0.344 0.155 3.682
✓ ✓ ✓ ✓ ✓ 0.156 0.100 0.069 0.353 0.349 0.156 3.664

Table 3: Performance of medical report generation task. (Study-level)

4.3. Concluding Observations

The overall strong results confirm that leveraging
natural domain vision-language models via adapta-
tion techniques is a promising approach to overcome
limited training data in medical applications like re-
port generation. Further investigations on model ar-
chitectures and adaptation methods would help un-
lock additional performance gains.

Limitations. While this study offers valuable con-
tributions to the field, it’s important to view its find-
ings as a starting point for further research rather
than as definitive conclusions. Firstly, the study fo-
cuses on the MIMIC-CXR medical imaging dataset,
offering a specialized rather than a generalized per-
spective. Future research could benefit from incorpo-
rating a variety of datasets, including different imag-
ing modalities like MRI and CT scans, as well as
diverse clinical applications such as cardiology and
dermatology. This would enrich the study’s appli-
cability across different medical domains. Secondly,
the study explores a limited range of vision-language
model architectures. While this provides a focused
analysis, additional research could explore a wider
array of model designs and sizes to offer a more com-
prehensive understanding of how these models can be
adapted for medical applications. Thirdly, the study
primarily addresses two specific applications: radiol-
ogy report generation and image-report retrieval. Ex-
tending the scope to include other medically relevant
tasks, such as disease classification or personalized di-
agnosis, could provide a more complete picture of the
model’s utility in healthcare settings. Fourthly, the
study employs a pretraining-finetuning framework for
model adaptation, which is just one of many pos-
sible approaches. Future work could explore alter-
native methods like intermediate task fine-tuning or
adapter modules to potentially enhance the model’s
adaptability across domains. Lastly, the study does
not delve into performance variations across different

disease types or image qualities. Subsequent research
could conduct more detailed analyses to uncover any
model biases or limitations in these areas.

5. Conclusion

In this study, we explore the problem of cross-domain
adaptation for vision-language (VL) foundation mod-
els, specifically focusing on adapting from natural do-
mains to medical domains. Our approach efficiently
leverages large-scale pretrained VL models developed
for natural domains, while effectively bridging the do-
main gap even when only limited data is available in
the new medical domain. We conduct a systematic
evaluation of various pretrained models and adap-
tation methods, assessing their performance across
multiple medical applications. The insights gained
from this study offer valuable guidance for adapt-
ing VL models to different domains. Future research
directions may include fine-grained medical adapta-
tion using FIBER for tasks such as medical phrase-
grounding and object detection, as well as exploring
the benefits of fine-grained medical pre-training for
report generation tasks.
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